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abstract: The joint spatial and temporal fluctuations in the com-
munity structure of tropical butterflies are analyzed by fitting the
bivariate Poisson lognormal distribution to a large number of ob-
servations in space and time. By applying multivariate dependent
diffusions for describing the fluctuations in the abundances, the en-
vironmental variance is estimated to be very large and so is the
strength of local density regulation. The variance in the lognormal
species abundance distribution is partitioned into components ex-
pressing the heterogeneity between the species, independent noise
components for the different species, a demographic stochastic com-
ponent, and a component due to overdispersion in the sampling. In
disagreement with the neutral theory, the estimates show that the
heterogeneity component is the dominating one, representing 81%
of the total variance in the lognormal model. Different spatial com-
ponents of diversity, the alpha, beta, and gamma diversity, are also
estimated. The spatial scale of the autocorrelation function for the
community is of order 1 km, while sampling of a quadrat would
need to be 10 km on a side to yield the total diversity for the
community.

Keywords: species abundance distribution, lognormal distribution,
spatial scaling, communities of butterflies.

The lognormal species abundance distribution first intro-
duced by Preston (1948) has been widely used to describe
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patterns in community structure (Bulmer 1974; May 1975;
Pielou 1975; Engen 1978; Ugland and Gray 1982). There
are different types of proposed models explaining this pat-
tern, most of which use the concept of niche preemp-
tioning and rely mathematically on the central limit the-
orem (Bulmer 1974; May 1975; Sugihara 1980). Engen and
Lande (1996b) proposed a dynamic model including spe-
ciation and extinction, where species abundances were
modeled by multivariate diffusion processes. The species
could follow different diffusions, and the noise terms act-
ing on the different species could be correlated. In a par-
allel article (Engen and Lande 1996a), a similar model
giving the gamma type of abundance model, including
Fisher’s (Fisher et al. 1943) log-series model and the ex-
tended gamma model (Engen 1974, 1978) was presented,
and recently Diserud and Engen (2000) defined and fitted
a number of data sets to a more general model embracing
the gamma as well as the lognormal. All these models use
environmental stochasticity (May 1973; Lande 1993; En-
gen et al. 1998) as the major driving force of the stochastic
fluctuations in contrast to Hubbell (1997, 2001), whose
approach was based on demographic stochasticity only and
therefore can be realistic only for rather small population
sizes (Lande 1993).

Community data are usually collected at multiple lo-
cations in space at different times, yielding samples that
differ considerably. A major difficulty in detecting which
differences are due to sampling effects is the fact that a
large number of species are usually represented by only
one or a few individuals in the samples. Hence, not only
the observed number of individuals for each species, but
also the list of species represented in the sample, may differ
considerably in space and time. The spatial variation in
these types of data led early ecologists to define the spatial
structure of communities in terms such as alpha, beta, and
gamma diversity (Whittaker 1972) or within-habitat and
between-habitat diversity (MacArthur 1965). The alpha
diversity was defined as the within-habitat diversity, while
the gamma diversity is the total diversity of a region in-
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Figure 1: Scale map in meters of butterfly trap locations. Each of the
25 sites represents a canopy-understory trap pair. Modified from DeVries
and Walla (2001).

cluding several habitats. The beta diversity was used to
describe the differentiation between alpha and gamma di-
versity. According to Whittaker (1972), the gamma di-
versity of a landscape, or geographic area, is the product
of the alpha diversity of its communities and the degree
of beta differentiation among them. In this article, we shall
analyze this type of spatial community structure assuming
that a lognormal species abundance distribution fits at
each local habitat at any time but with some correlation
structure between sites. We do this by fitting a two-
dimensional Poisson lognormal species abundance model
to pairs of communities and finally by analyzing the tem-
poral and spatial structure of correlations estimated from
each pair. This enables us to study the temporal fluctua-
tions of diversity and to calculate the alpha, beta, and
gamma diversity, including the spatial scaling of the in-
crease in diversity with area.

The underlying model is basically that in Engen and
Lande (1996b), with heterogeneity between species but
generalized to include spatial structure as well. The fun-
damental parameter of interest in the lognormal species
abundance distribution is the variance parameter that has
traditionally been used as a measure of community struc-
ture (Patrick et al. 1954; DeVries et al. 1999). Our approach
enables us to partition the variance in the lognormal spe-
cies abundance distribution into four additive components
and, thus, to better understand the processes that lead to
differences in the relative abundance of species. One com-
ponent of the variance is the contribution due to the het-
erogeneity in growth rates and carrying capacities between
species. This component reflects innate differences in the
biology of each species that influence species density,
and its existence contradicts the assumption of neutral-
abundance models (Hubbell 2001). Another component,
which is the one that also has a spatial structure, is due
to the component of the environmental noise acting in-
dependently on each species. We are also able to identify
an additive component due to demographic stochasticity.
If the sampling is overdispersed compared to the Poisson
distribution, this component will also be affected by the
degree of overdispersion. Finally, we also compute the total
variance parameter estimated by fitting the univariate Pois-
son lognormal distribution to the data, treating all counts
for every species at all times and sites as a single sample.
This parameter is somewhat larger than the variance pa-
rameter of the species abundance distribution since it also
includes the component due to heterogeneity in carrying
capacities between sites as well as the effect of the noise
component that is common to all sites and species.

Spatial aspects of single-species populations have been
frequently discussed in the literature (Shigesada and Ka-
wasaki 1997; Tilman and Kareiva 1997; Bascompte and
Solé 1998; Turchin 1998). Simulation studies have been

performed to understand the dynamics of spatially struc-
tured populations and to link them to basic demographic
processes (Ranta et al. 1995, 1997a, 1997b, 1999). In par-
ticular, much attention has been given to the spatial scale
of synchrony of population fluctuations that is known to
influence the risk of local and global extinction (Allen et
al. 1993; Bolker and Grenfell 1996; Heino et al. 1997).
Lande et al. (1999) and Engen et al. (2002) used linear
approximations to spatiotemporal diffusion models with
migration to analyze the spatial synchrony of population
fluctuations, while Engen (2001) used a nonlinear model
with migration to generate the lognormal distribution of
population densities in space.

In this article, we analyze the structure of spatially and
temporally related communities of butterflies in a Neo-
tropical rain forest. Adult butterflies in the family Nym-
phalidae that are attracted to, and feed on, the juices of
rotting fruits comprise a feeding guild commonly known
as fruit-feeding nymphalids (see DeVries et al. 1997, 1999).
By employing arrays of traps baited with rotting fruits,
these butterflies have recently become an important focal
group for assessing spatial diversity of tropical insect com-
munities (e.g., DeVries 1988; Pinheiro and Ortiz 1992;
DeVries et al. 1997, 1999; Willott et al. 2000; DeVries and
Walla 2001). Using abundance data sampled at 25 locations
over a period of 5 yr (fig. 1), we fit a bivariate Poisson
lognormal model to 7,750 different community sample
pairs and analyze the structure of the correlations between
them.

The Bivariate Poisson Lognormal
Species Abundance Model

A community of S species fits the lognormal species abun-
dance model if the log of the abundances constitutes a
sample from a normal distribution. Different methods
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have been used in ecological literature to estimate the pa-
rameters of this distribution and to overcome the problem
that rare species may not be present in the sample and
that more species appear as the sampling intensity in-
creases. Here, we will use a generalization of the statistical
approach of Bulmer (1974), which is also the approach
adopted earlier by Fisher et al. (1943), when deriving the
log-series species abundance distribution. If the sampling
distribution conditioned on the abundance is Poisson,
then the distribution of counts between species will have
a Poisson lognormal distribution as explained in appendix
A. Since the zero class is not observable, the truncated
form of the distribution must be used in the estimation
procedure (Fisher et al. 1943; Bulmer 1974).

When considering two communities jointly, either in
two different locations or within the same community at
two different points of time, the natural assumption to
make is that the log abundances in the pair of communities
have the binormal distribution so that the lognormal
model still fits each community separately. The correlation
of this distribution then serves as a measurement of sim-
ilarity between communities. If the correlation is 1, then
the relative abundance of any species is the same in both
communities although samples will still be different due
to sampling effects. If sampling from both communities
is given by the Poisson distribution, the pair of counts
among species will have the bivariate Poisson lognormal
distribution. In this case, the zero-zero class is not ob-
servable, so the truncated form has to be used in the
estimation. The likelihood function must be calculated by
numerical integration and maximized numerically with
respect to the unknown parameters. When fitting only one
data set (two communities) to this model, uncertainties
are most conveniently found by performing parametric
bootstrapping, that is, simulating new sets of data from
the estimated model and calculating bootstrap estimates
from each simulated set of data. However, since we will
fit the model to a huge number of pairs of sites, we can
use the faster approach of bootstrapping by resampling
sites (Bjørnstad et al. 1999). For a further description of
the bivariate Poisson lognormal distribution, see appendix
A.

Spatial Autocorrelation and Variance Decomposition

Let be the abundance of some species at location zY(z, t)
in the plane at time t, and write for theX(z, t) p ln Y(z, t)
log abundance. If the population fluctuations around some
carrying capacities are not very large, the dynamics of the
log abundances may often be approximated by the con-
tinuous Ornstein-Uhlenbeck process

dX(z, t) p [r � dX(z, t)]dt � tdB(z, t), (1)

where is a standard Brownian motion (Karlin andB(z, t)
Taylor 1981). This model is equivalent to the diffusion
with infinitesimal mean and variance and t 2, re-r � dx
spectively. The parameter d represents the strength of local
density regulation. The stationary distribution is the nor-
mal with mean r/d and variance t 2/2d, and the stationary
distribution of is therefore the corresponding log-Y(z, t)
normal distribution. The carrying capacity of this popu-
lation is . We write for theK p exp (r/d) k p ln K p r/d
corresponding “carrying capacity” on the log scale.

In appendix B, we generalize this model to include a
demographic variance and a corresponding demo-2jd

graphic noise term. Here, we also consider the joint dy-
namics of all species in the community. We first show that
if there is some common noise term for all species, this
will not affect the correlations between community sam-
ples. In addition to such common noise, there may be
noise terms that are independent between species. We as-
sume that this noise has the same magnitude for all species
determined by a variance parameter . For all species,2js

this noise is spatially correlated with correlation ,r(v)
where denotes the displacement vector between the lo-v
cations. Finally, in accordance with Engen and Lande
(1996b), we assume that the growth rate r in equation (1)
is normally distributed among species with variance .2jr

For any species, this leads to the covariance

2 �du 2j r (v)e js s rcov[X(z, t), X(z � v, t � u)] p � ,
22d d

while the variance in log abundance among species can
be decomposed into three additive components:

2 2 2j j js d r2j p � � , (2)
22d d2Kd

where . The first term is the environmental�r/d1/K p Ee
component due to independent environmental noise terms
acting on the species, the second term is the demographic
component, and the last term is the interspecies hetero-
geneity component due to the heterogeneity between the
species determined by the variance of r among species.2jr

This term may alternatively be expressed by the between-
species variance in the carrying capacities on the log scale;
that is, .2 2 2j p Var (k) p Var (r/d) p j /dk r

Finally, from the expressions for the variance and co-
variance, the joint spatial and temporal correlation then
takes the form

2 �du 2j r (v)e � 2j /ds s r
r(v, u) p . (3)

2 2 2j � j /K � 2j /ds d r
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If there is overdispersion, there will be an additional term
v2 in the denominator as explained in appendix C. The
correlation given by equation (3) is exactly the correlation
parameter in the bivariate Poisson lognormal distribution
for samples taken at time difference u from two com-
munities with displacement vector between them inv
space.

Temporal Fluctuations and Spatial Scaling of Diversity

According to our model, the estimated variance from the
total collection of local samples will have a demographic
component. If the number of traps at one location was
increased, the demographic component at each trap would
represent independent contributions to the fluctuations
and would therefore be wiped out relative to the effect of
the environmental noise if catches from a large number
of traps were added together. When modeling the diversity,
we therefore omit the demographic component.

The most widely used index of diversity is the infor-
mation index (Shannon and Weaver 1948)

S

H p � p ln p ,� i i
ip1

where the pi’s are the relative abundances of the species
in the community; that is, . In our model,Sp p Y / � Yjp1i i j

the follows a multivariate Ornstein-UhlenbeckX p ln Yi i

process. Hence, when the parameters of the process are
estimated, we can easily simulate the process H against
time to find the magnitude and speed of the fluctuations
in H. In practice, we will then first simulate the carrying
capacities on the log scale of each species in the com-
munity. These are normally distributed with variance ,2jk

while the expectation may be chosen arbitrarily since the
relative abundances will not depend on it. Second, we can
simulate the fluctuations of each species around its car-
rying capacity separately as independent processes with
infinitesimal variances using well-known properties of2js

the Ornstein-Uhlenbeck process (see Karlin and Taylor
1981). At each point in time, we then calculate the absolute
abundances, the relative ones, and, finally, the value of H.

The first-order approximation to the expectation of H
that is valid when the number of species is large and the
variance parameter j 2 of the lognormal is small is simply
(Bulmer 1974; Webb 1974; Engen 1978)

1
2EH ≈ ln S � j .

2

To this order of approximation, we find from equation

(2), ignoring the demographic component, that the ex-
pected alpha diversity at each location is

2 21 j js rEH ≈ ln S � � .a 2( )2 2d d

For very large areas, the independent fluctuations due to
will practically be wiped out, and the mean log abun-2js

dances over the area will be constant equal to the log
abundances of each species that are normally distributed
with variance . Hence, for very large areas, the2 2 2j p j /dk r

expected value of the diversity corresponding to Whitta-
ker’s (1972) gamma diversity is

21 jrEH ≈ ln S � .g 2( )2 d

As a consequence, the beta diversity, being the difference
between the two, has expectation

2jsEH ≈ .b 4d

Notice that Whittaker (1972) used the term “product”
rather than “sum” for the effect of the beta diversity. In this
model, this effect will actually be a factor in a2exp (j /4d)s

product in accordance with Whittaker’s (1972) definition
if we use rather than H as diversity index.exp (H)

We can also calculate the spatial scaling of the increase
in diversity from EHa to EHg as the area increases. At each
point in a quadrat with side a, the abundances are log-
normally distributed. If one approximates the distribution
of the total abundances in the quadrat by the lognormal,
it is straightforward to show that the variance of the cor-
responding normal distribution is

� 2

2j 2r r (az)j /(2d)s sV(a) ≈ � ln e f(z)dz,�2d
0

where f(z) is the distribution of the distance between two
randomly chosen points in a quadrat with area 1, which
is actually

f(z) p

22z(p � z � 4z) for 0 ≤ z ≤ 1
.2

2 1/2 2 �2z 2 arcsin � 1 � 4(z � 1) � 2 � z for 1 ≤ z ≤ 2{ 2[ ( ) ]z
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Figure 2: The left panel shows the estimated partitioning of the variance of the lognormal species abundance distribution into three components:
the heterogeneity between species (HS ), the demographic component that also may include the effect of overdispersion (D), and the environmental
component (E). The right panel shows the estimated partitioning of the variance parameter of the lognormal when the distribution is fitted to the
total data set. The additional component (HL ) now represents the effect of heterogeneity between locations as well as the common noise generated
by .2jc

Notice that if the area is so small that rs is practically 1
over the entire quadrat, then the variance approaches

2 2j jr sV(0) p � ,
2d 2d

which is actually j 2, while for very large areas where the
mean of rs is practically 0, it approaches

2jrV(�) p .
2d

The expected diversity in the quadrat is EH(a) ≈ ln S �
. If the parameters take values so that the ap-(1/2)V(a)

proximation for the expected diversity is not valid, then
the expectations may alternatively be computed by sto-
chastic simulations.

Fitting the Model to the Tropical Butterfly Data

Estimation

There are 25 sites and 5 yr of data, and the bivariate model
has to be fitted to all 7,750 pairs of samples. Since the
uncertainty in each estimate of the correlation is fairly
large, as seen in figure 2, we cannot expect to find exactly
the shape of the function rs( ). However, we will mainlyv
be interested in the scaling of this function, which we can
find by assuming an exponential decay. Hence, equation
(3) takes the form

v�h �dur(v, u) p Ae � B, (4)

where all four constants can be estimated by fitting the
curve to the 7,750 estimates. The variance of each cor-
relation estimate is large and varies in an unknown way

with sample sizes and the magnitude of the true corre-
lations. Because this information is not available, we have
chosen to fit the curves by simple least squares. Since the
variance j 2 of the lognormal is the same at each location
and each point of time, we estimate this by the mean value
of the estimated variances. Finally, by combining equations
(2)–(4), we can eventually estimate all three terms in the
additive decomposition defined by equation (2), together
with the parameters h and d defining the spatial and tem-
poral autocorrelations. We define the spatial scaling of the
noise that is specific for each particular species as d p

(Roughgarden 1975; Lande et al. 1999; Engen et al.1/h
2002). All confidence intervals given in brackets below
are 95% intervals based on 1,000 resamples of popu-
lations (sites and times) with replacement (Cressie 1993;
Bjørnstad et al. 1999).

Results

The mean value of the variance estimates for all popula-
tions was , with confidence interval (3.385,2ĵ p 3.418
3.454). The major component turned out to be the in-
terspecies heterogeneity component estimated as 2.756
(2.706, 2.790). This means that the variance in abundance
between species is mainly due to differences between the
species, here modeled as a variation in specific growth rate
and local carrying capacity among species. This means that
species that are among the most abundant at the present
time are also expected to be so in the future. Hence, this
result is in disagreement with the commonly used as-
sumption of so-called neutral models (see Hubbell 2001).
This model is a neutral one only if , in which case2j p 0r

the variance of the lognormal is determined totally by
stochastic factors other than permanent between-species
variation in parameters.
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The estimated environmental component of the vari-
ance parameter was 0.480 (0.393, 0.575), while the de-
mographic component was 0.183 with confidence interval
(0.106, 0.259). We emphasize that this component may be
an effect of overdispersion including the term v2 defined
in appendix C, as well as demographic stochasticity. These
components are due to demographic and environmental
stochasticity generated by between-years stochastic fluc-
tuations in vital rates. Fitting the univariate Poisson log-
normal distribution to the total set of counts for every
species at all times and sites gives a variance parameter of
5.045. The difference between this parameter and the var-
iance parameter of the species abundance model (1.527)
is a variance component generated by heterogeneity be-
tween sites in local carrying capacities as well as the effect
of the common noise term (see app. B). Generally, this2jc

component will also be affected by differences in sampling
effort between sites and seasons, but for our data set the
effort is constant. Figure 2 (left panel) shows the estimated
partitioning of the variance parameter in the lognormal
species abundance model, as well as (right panel) the par-
titioning of the total variance.

The spatial scaling of rs( ) was estimated as ˆv d p 1.04
km (0.67, 1.61). This means that the environmental noise
acting on a single species at locations at distance 1 km
will have a significant positive correlation, while the cor-
relation practically will vanish at a distance of 3 km. An-
other parameter estimated with rather large uncertainty is
the strength of local density regulation, which is d̂ p

(0.577, 2.626). The inaccuracy is due to the fact that1.610
the term decays to a very small value already at�due

, which is the smallest value of u that is 10, in theu p 1
data we have used. Most observations are for time differ-
ences 11, for which the factor containing d is practically
0. Hence, the data contain rather little information about
this parameter. The large value of this parameter defining
the strength of density regulation is equivalent to the re-
turn time to equilibrium being small. The species are ex-
pected on average to pass the equilibrium abundance more
than once a year.

In figure 3, we have plotted all estimated correlations
for and against the spatial distance to-u p 0 u p 1 v
gether with the smoothed spatial autocorrelation defined
by equation (4) with those two values of u inserted.

In figure 4, we show stochastic simulations of the tem-
poral fluctuations in the information index at local sites.
The parameters used are the estimates obtained from the
data. The total number of species in the whole community
is estimated to be 158 by fitting a Poisson lognormal abun-
dance model to the total accumulated data. Figure 5 gives
the histogram for the stationary distribution for the same
temporal process. Notice that the temporal fluctuations in

H are fairly large, ranging from about 2.3 to 4.2 with a
distribution that is skew to the left.

In figure 6, the expected diversity in quadrats is plotted
against the quadrat size. This shows an increase from the
alpha diversity that is 3.63 to a gamma diversity of 3.81.
The first-order approximation gives the correct shape and
scaling of this curve, but the error in absolute value is
rather large.

Discussion

In this article, we were able to estimate parameters in the
model in Engen and Lande (1996b) that are essential for
understanding how communities fluctuate in time and
space. We did this by conditioning on the noise term that
is common for all species in the community. Engen and
Lande (1996b) showed that such a term, which could also
depend on the sum of the abundances of all species in the
community and hence describe a community-level density
regulation as well as common stochastic noise, would not
affect the structure of the community. Intuitively, this is
obvious, since a multiplication of all abundances by some
common factor for all species and all locations only adds
a common term to the log of the abundances. Hence, this
will affect the mean value parameter of the lognormal but
not the variance parameter, which is the one we analyzed.
However, such a common factor obviously generates a
synchrony in the fluctuations of the populations. This
component of the synchrony is not considered in our spe-
cies abundance model since we have conditioned on this
common noise. The synchronies, or spatial autocorrela-
tions, dealt with here are those generated by the indepen-
dent environmental effects on each species.

The environmental variance for the species in this com-
munity is very large. Previously, such variances have been
estimated for some bird species (Sæther et al. 1998; Tufto
et al. 2000) and are usually found to be of order 0.01–0.1.
In this community of butterflies, the environmental var-
iance is . We have not estimated the common2 2 2j p j � je c s

component , but the estimate for (see eq. [2]) is as2 2j jc s

large as 2.22 (0.77, 3.65). However, the very large envi-
ronmental variance does not lead to extremely large tem-
poral fluctuations in abundances. This is due to the fact
that the strength of local density regulation is also very
large, actually (0.577, 2.626). This parameterg p 1.610
turns up in the denominator of the expression for the
variance in the stationary distribution of log abundance.
For the bird species mentioned above, this parameter is
much smaller, actually ranging from about 0.01 to 0.5. The
return rate to equilibrium is much shorter for the species
in this butterfly community compared to birds and may
be a consequence of much shorter generation time as well
as larger values of r.



66 The American Naturalist

Figure 3: The estimated correlations plotted against spatial distance in kilometers for time differences (left panel) and (right panel).u p 0 u p 1
The curves are the fitted autocorrelation function given by equation (3) with u inserted as 0 and 1, respectively.

A major result in this article is the theoretical decom-
position of the variance of the lognormal species abun-
dance model into four additive components, and the es-
timation of these components from data shown in figure
2 (left panel). We did not attempt to estimate the com-
ponent due to overdispersion, which must be done by
performing a number of parallel samples. However, we
have estimated the sum of this term and the demographic
component that in the end will make it possible to estimate
both of them by estimating v2. Even if our model leads to
communities where the abundances are random samples
from lognormal distributions, our findings contradict the
concept of neutral models. In the model defined by Engen
and Lande (1996b), the species abundances have different
lognormal distributions since the parameter r differs be-
tween them. The r values are actually a sample from a
normal distribution. Our investigation shows that the het-
erogeneity component of the variance created by inter-
species heterogeneity in growth rates is much larger than
the other components. Here, the interspecies heterogeneity
component is estimated to be around 81% of the variance

of the lognormal. As a consequence, there are a large num-
ber of species with small values of r and small carrying
capacities, and these may be predicted to be threatened
by extinction if the community is disturbed, for example,
by fragmentation. This emphasizes the importance of
monitoring multiple species for conservation where the r
values of the species selected to assess communities are
critical. As we show, focusing only on abundant species
with high r values will underestimate the extinction prob-
abilities of other, less abundant species. The component
of the variance due to independent environmental noise
between the species only accounts for 14% of the variance;
the final 5% is demographic noise and/or overdispersion
in the sampling.

The correlation estimated from two community samples
collected at different times or sites will not be affected by
heterogeneity in local carrying capacities or differences in
sampling effort between sites or times. Neither will it be
affected by the common noise term defined by the pa-
rameter . Such types of heterogeneity will only have a2jc

common multiplicative effect on all species, and the com-
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Figure 4: Temporal fluctuations in the information index of diversity.
The graph is a simulation from the theoretical model with the estimated
parameters inserted. The applied estimate of the number of species in
the community is 158.

Figure 5: The stationary distribution of the information index of di-
versity. The histogram is based on 2,000 simulations from the stationary
distribution of the index. The parameters in the simulations are those
estimated from the data, and the applied estimate of the number of species
in the community is 158.

munity structure revealed by the lognormal abundance
model will therefore remain unchanged. The total variance
parameter of the univariate Poisson lognormal estimated
by treating the complete data set as a single sample is,
however, affected by such heterogeneity. This is demon-
strated in figure 2 (right panel), which shows the parti-
tioning of total variance in which the heterogeneity be-
tween locations and the effect of together accounts for2jc

31% of the total.
The second main result is the theoretical modeling of

spatial structure in the correlation of the bivariate lognormal
species abundance distribution, and the method of esti-
mating basic spatial and temporal parameters jointly. Al-
though each estimated correlation is rather uncertain, all
7,750 estimates considered together make it possible to draw
some statistical inference about the parameters, including
the spatial scaling of the autocorrelation. We find that the
autocorrelation rs( ) decays to at a distance ofv 1/e ≈ 0.37
about 1 km (0.67, 1.61). Although we have not attempted
to model migration here, it is interesting to view this result
in light of the findings of Lande et al. (1999), Engen (2001),
and Engen et al. (2002), who analyzed in theoretical models
how different factors are expected to affect the spatial scaling
of the correlations between population sizes. Migration
tends to increase the scaling, in particular when there is
weak local density regulation. Since we found a strong den-
sity regulation here, migration probably has a rather small
impact (Lande et al. 1999). However, it would still be
useful to compare the scaling to other communities in
the light of information available on migration rates
and distances for different communities.

From our data set, we cannot determine the extent to

which different parameters used to describe migration
rates and distances, habitat heterogeneity, and autocor-
relations in the environmental noise affect the observed
scaling. We do, however, know that the effects of migration
can vary among species. For example, our preliminary
population analyses indicate that individuals of Nessaea
hewitsoni and Myscelia capenas move !50 m during their
lifetimes, whereas individuals of Historis acheronta and
Morpho achilles may move across the entire study area
(about 2 km) in a single day. Thus, we suspect that the
importance of migration in estimating spatial structure
may depend on the particular species being considered.
Measures of temperate-zone population synchrony in but-
terflies and local spatial scaling in tropical communities
appear to be roughly equivalent. An investigation of 21
butterfly species in Great Britain (Sutcliffe et al. 1996)
found that average population synchrony decreased up to
1–2 km and that synchrony was evident up to 4 km for
highly mobile species. In another study, Thomas (1991)
reported population synchrony for Plebejus argus at dis-
tances up to about 600 m, but because it is a relatively
sedentary species and occurs in successional habitats, it
may be expected to show a smaller spatial scale of syn-
chrony. The spatial scaling of autocorrelation of approx-
imately 1 km estimated for our tropical forest community
includes both sedentary and mobile species and is slightly
smaller than what Sutcliffe et al. (1996) estimated from
patchy habitats typical of Britain. We might expect habitat
fragmentation to decrease the observed scale of spatial
synchrony through reduction in migration distance across
unsuitable habitats, and if continuous habitat types are
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Figure 6: The expected diversity in quadrats plotted against the side
length of the quadrat. The smooth line is the first-order approximation,
and each point on the oscillating curve is the mean of 10,000 simulations
from the model. The dotted lines reflect the within-habitat alpha diversity
and large-scale gamma diversity.

compared, tropical butterflies may, in fact, show a smaller
spatial scale of autocorrelation than temperate butterflies.

The tree falls so common in tropical forests are known
to create small-scale disturbances that may pass quickly
from open to closed (Denslow 1994). It has been suggested
that tree-fall frequency maintains plant diversity in tropical
forests by precluding the dominance of any one species
and creating microhabitats suitable for colonizing species
(Connell 1978; Hubbell et al. 1999). In our community,
we found that a sample from a single location and time
provides little information about the composition of a
sample taken the following year (fig. 1b). This may, in
part, be due to tree falls changing the composition of local
vegetation necessary for butterflies and contributing to the
short temporal scale of autocorrelation observed within
the study area. For example, butterfly larvae that depend
on abundant new growth of host plants in recently formed
gaps (DeVries 1987) may increase in density during a fa-
vorable temporal window, but, due to succession, the same
gap may be unacceptable 2 yr later. Conversely, subpop-
ulations on healthy shade-tolerant host plants one year
may be adversely affected by tree falls in the following
year. Thus, our results are consistent with the idea that
tropical forests are constantly undergoing low levels of
disturbance that preclude the long-term persistence of spa-
tially structured populations.

A third result of our analysis is the derivation of the
relation between the temporal and spatial model and the
well-established concepts like the alpha, beta, and gamma
diversity of Whittaker (1972). By applying the information
index of diversity, we are able to calculate how the diversity
of subcommunities defined by quadrats is expected to in-

crease with the size of the quadrats. The scaling of this
function can be defined as the quadrat side required to
obtain a diversity equal to the mean of the local alpha
diversity and the large-scale gamma diversity. By inspec-
tion of figure 6, we see that this scaling is about 3 km,
which is actually much larger than the scaling of the auto-
correlation rs( ) for the local populations. This is due tov
the fact that the total diversity for a quadrat comes out as
an integral over all pairs of points in the quadrat, and
there will be a large number of combinations of points
within a quadrat that have distances between them that
are much shorter than the side length of the quadrat.

There have been different proposals on how to partition
the total diversity of a community into Whittaker’s (1972)
spatial components of diversity using different diversity in-
dices (Routledge 1977, 1979; Lande 1996). Lande (1996)
defined the similarity among multiple communities as the
proportion of the total diversity found within communities.
By applying this definition and using the information index,
we see from figure 6 that the similarity between the local
communities is estimated to be 0.95 (3.63/3.81). However,
this parameter does not give any information about the
spatial scaling revealed by figure 6. In a similar type of
analysis based on diversity indices, DeVries et al. (1997)
estimated the variance of the lognormal for the same kind
of communities of butterflies in a different part Ecuador
by the method of Pielou (1975) to be 3.28, using base 3 in
the logarithmic grouping of species. Converting this to the
variance using natural logarithms as we have done implies
multiplying the estimate by , which gives an2(ln 3) p 1.207
estimate of 3.96 that is a bit larger than our estimate of
3.42. This difference may partly be due to the fact that the
Poisson sampling of individuals is included in the variance
by Pielou’s (1975) method, while the method used here
estimates the variance in the underlying lognormal cor-
recting for the sampling variance.

Previous work on this community illuminated the het-
erogeneity in species diversity among different areas of the
same forest (DeVries and Walla 2001). The analysis here
provides a more general perspective regarding the nature
and scale of within-habitat heterogeneity. Estimates from
our model indicate that even measures based on a diversity
index reducing the need for equal sample sizes among
quadrats would require larger sampling areas to approach
the estimated gamma diversity. For example, figure 6
shows that a single quadrat would need to be 10 km on
a side to yield the expected gamma diversity for this com-
munity. Thus, it is not surprising that DeVries and Walla
(2001) found heterogeneity among forest areas separated
by !500 m. However, this also suggests that understanding
tropical community diversity may require sampling on
spatial scales upward of several square kilometers in order
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to distinguish between heterogeneity within habitats and
larger-scale differences in gamma diversity.
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APPENDIX A

The Bivariate Poisson Lognormal Distribution

Under the assumption of random sampling, the number
of individuals sampled from a given species with abun-
dance y, say N, is Poisson distributed with mean, say qy,
where the parameter q expresses the sampling intensity.
If is normally distributed with mean m and varianceln y
j 2 among species, then the vector of individuals sampled
from all S species then constitutes a sample from the
Poisson lognormal distribution with parameters (m �

, where m and j 2 are the mean and variance of2ln q, j )
the log abundances. For , this is the Poisson log-q p 1
normal distribution with parameters , which may2(m, j )
be written in the form

�

2 2P(N p n; m, j ) p q(n; m, j ) p g (m, j, u)f(u)du,� n

��

where f(u) is the standard normal distribution and

�(uj�m)exp [ujn � mn � e ]
g (m, j, u) p .n n!

Since S is usually unknown, we only consider the observed
number of individuals for the observed species. With a
general sampling intensity q, the distribution of the num-
ber of individuals then follows the zero-truncated Poisson
lognormal distribution

2q(n; m � ln q, j )
,

21 � q(0; m � ln q, j )

defined for . The maximum-likelihood esti-n p 1, 2, …
mation of the parameters of this distribution was derived
by Bulmer (1974).

Now consider two communities jointly and assume that
the log abundances among species have the binormal dis-
tribution with parameters (m1, , m2, , r). Using index2 2j j1 2

to denote the communities and first assumingi p 1, 2

that the sampling intensities , samples fromq p q p 11 2

the communities have the bivariate Poisson lognormal
distribution

2 2q(n , n ; m , j , m , j , r) p1 2 1 1 2 2

� �

g (m , j , u)g (m , j , v)f(u, v; r)dudv,�� n 1 1 n 2 21 2

�� ��

where here denotes the binormal distributionf(u, v; r)
with zero means and unit variances and correlation r. In
the general case with sampling intensities q1 and q2, it is
easy to check that the mi should be replaced by m �i

. In this case, some species will be missing from bothln qi

samples. The number of individuals for observed species
then have the truncated distribution

2 2q(n , n ; m , j , m , j , r)1 2 1 1 2 2 .
2 21 � q(0, 0; m , j , m , j , r)1 1 2 2

APPENDIX B

Spatial Community Dynamics

Demographic stochasticity may be included by replacing
in equation (1) in the main text bytdB(z, t) j dB (z, t) �e e

, where and are now1/2j /[Y(z, t)] dB (z, t) B (z, t) B (z, t)d d e d

independent standard Brownian motions. For small fluc-
tuations, we may further replace Y with K, which again
gives equation (1) with . The parameters2 2 2t p j � j /Ke d

and are commonly known as the environmental and2 2j je d

demographic variances, respectively (Athreya and Karlin
1971; Turelli 1977; Leigh 1981; Lande 1993; Engen et al.
1998). The corresponding approximation to the stochastic
differential equation is then

�dX(z, t) p [r � dX(z, t)]dt � j dB (z, t) � j dB (z, t)/ K.e e d d

Now, writing for another position in the plane,z � v ( z
we assume that the demographic noise processes B (z, t)d

and are independent of each other and inde-B (z � v, t)d

pendent of the processes defining the environmental noise,
while the environmental noise processes have some spatial
autocorrelation depending on the distance between thev
sites.

In order to construct an abundance model for the com-
munity of species, we first consider two species jointly at
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position z and , writing and forz � v X (z, t) X (z � v, t)1 2

their log abundances. We assume that the environmental
component of the noise for each of the two species may
be split into two components: . This is in2 2 2j p j � je c s

agreement with the relation

j dB (z, t) p j dB (z, t) � j dB (z, t)e e c c s 1

for species 1 and, correspondingly, for species 2, where
the different Brownian motions are independent. Here,

is a noise process that is common for all species,B (z, t)c

while is a noise for species 1, independent of theB (z, t)1

noise for the other species. The specific speciesB (z, t)2

noise processes and both have the sameB (z, t) B (z, t)1 2

spatial autocorrelation function rs( ) defined by the re-v
lation , and the same ap-EdB (z, t)dB (z � v, t) p r (v)dt1 1 s

plies for the second species. The subscript c stands for
“common” and indicates a common noise term, while s
stands for “species” and indicates independent noise terms
that are characteristic for each species. The variance of these
noise terms is assumed to be the same for each species.

Due to simple linear properties of the Ornstein-Uhl-
enbeck process, the noise term that is common will actually
give the same additive stochastic contribution to the log
abundance of all species and will therefore be confounded
with the expectation. In the long run, however, this con-
tribution will be close to 0. Neither will this term have
any effect on the shape of the abundance model when S
different species are included (Engen and Lande 1996b).
We therefore consider the model obtained when condi-
tioning on this noise, remembering that a stochastic part
generated by this noise is then included in the expectation,
which is now only approximately equal to r/d.

It follows from these assumptions that the bivariate sta-
tionary distribution of in this con-[X (z, t), X (z � v, t)]1 1

ditional model is the bivariate normal and the same as the
corresponding distribution for the other species. The var-
iance of each component is , while the2 2[j � (j d/r)]/2ds d

covariance is . Using known general properties2j r (v)/2ds s

of the Ornstein-Uhlenbeck process (Karlin and Taylor
1981), we find for a time difference u between the obser-
vations that

�ducov[X (z, t), X (z � v, t � u)] p cov[X (z, t), X (z � v, t)]e .1 1 1 1

Engen and Lande (1996a, 1996b) pointed out that one
would also obtain the lognormal species abundance model
if heterogeneity between species was introduced by assum-
ing that the parameters r for each species were chosen
independently from a normal distribution with mean, say
, and variance . For this model, including heterogeneity2r̄ jr

between species modeled by between-species stochasticity
in r, it is straightforward to show that

2 �du 2j r (v)e js s rcov[X (z, t), X (z � v, t � u)] p � ,1 1 22d d

while the variance of any Xi can be decomposed into three
additive components:

2 2 2j j js d r2j p � � ,
22d d2Kd

where . From the expressions for the variance�r/d1/K p Ee
and covariance, it follows that the joint spatial and tem-
poral correlation then takes the form

2 �du 2j r (v)e � (2j /d)s s r
r(v, u) p .

2 2 2j � (j /K) � (2j /d)s d r

If there is overdispersion, there will be an additional term
v2 in the denominator as explained in appendix C.

Finally, we expand the model to include S species rather
than two, writing for the vector of log abundancesX(z, t)
at location z at time t. In our conditional model, the pairs

and are then in-[X (z, t), X (z � v, t � u)] i p 1, 2, … Si i

dependent bivariate normally distributed variables with
variance for each component2 2 2[j � (j /K) � (2j /d)]/2ds d r

and a correlation between them. Hence, the com-r(v, u)
ponents of the two vectors and areX(z, t) X(z � v, t � u)
each independent and normally distributed with the same
parameters, while the components with the same subscript,
representing log abundances of the same species at the two
locations, have correlation . The components of ther(v, u)
vectors of population sizes , representing the sameY(z, t)
species, possess the corresponding bivariate lognormal dis-
tribution. Assuming Poisson sampling of individuals at the
locations z and , or possibly sampling with overdis-z � v
persion as defined in appendix C, a two-dimensional zero-
zero-truncated Poisson lognormal model may be fitted to
the vectors , which gives an esti-[N(z, t), N(z � v, t � u)]
mate of the correlation and the variance for eachr(v, u)
possible combination of and u provided by the data.v

APPENDIX C

Overdispersion

Individuals are often clustered, due to dependent behavior
or small-scale heterogeneity in the environments. Then,
the sampling distribution of N given the abundance y is
not Poisson but will often show some overdispersion; that
is, the variance in the sampling distribution of N is greater
than the mean. Overdispersion only changes the parameter
values in our abundance model and not the mathematical
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form, if we assume that the sampling distribution itself is
Poisson lognormal; that is,

�

n(qyv) v�qyP(N p nFY p y) p e f(v)dv,� n!
0

where f( ) is some lognormal distribution with mean 1v
so that we still have . Hence, using the generalE(NFy) p qy
expression for the mean of a lognormal distribution, the
distribution of must be the normal with mean �v2/2ln v
and variance v2. The parameter v is then a measure of
overdispersion. More precisely, conditionally on the abun-
dance, we have

var(NFY ) � E(NFY ) 2vp e � 1.
2[E(NFY )]

If , we are back to Poisson sampling. When usingv p 0
this sampling distribution rather than the Poisson, it is
easy to see that the distribution of N is still the Poisson
lognormal, but the parameters are 2 2(m � ln q � v /2, j �

rather than . Hence, if v can be estimated2 2v ) (m � ln q, j )
from data (e.g., by repeated measurements at the same
locations), we can perform our analysis as if v were 0 and
just correct the parameters in the end using the estimate
of v.

Notice that if the above mixing density f( ) is thev
gamma distribution, then the distribution of N is the more
commonly used negative binomial. However, when the y’s
are lognormally distributed, it is mathematically more
preferable to use the lognormal as the mixing distribution.
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